This resulted in a sufficient incorporation rate of 15N

As reported by McClatchy et al., a low incorporation rate of 15N is expected in slow turnover tissues, like the brain, compared to rapidly turnover tissues, like the liver. Indeed, the authors succeeded in presenting a feeding protocol for rats that started with the pregnancy of the dam, which provided an incorporation rate of up to 94% for all body tissues, but is quite costintensive. Cytisine However, whereas rats did not seem to have any problems coping with blue-green algae enriched diet over a whole generation, preliminary studies in our laboratory indicated that the offspring of mice Filixic-acid-ABA exclusively fed with blue-green algae diet had severe developmental problems. We were able to overcome the problem of malnutrition in early development by free choice blue-green algae diet/standard chow feeding. This resulted in a sufficient incorporation rate of 15N in all tissues in adulthood. However, the incorporation rate in adolescence was considerably low and, more importantly, we observed a strong impact of the blue-green algae diet per se on depression-like behavior of the adult animals. This effect was even more pronounced in animals fed with 15N-enriched blue-green algae diet. We therefore developed a novel diet based on Ralstonia eutropha bacteria, which we found to be not only better tolerable for the animals but also more cost-effective. Indeed, using this diet, we did not encounter any health problems of the dams or the offspring. Only the weight of the animals was slightly reduced when fed with the bacteria diet. This had, however, no detectable phenotypic consequences. Whether the reduced weight was due to the slightly different diet composition compared to standard lab chow or the addition of bacteria remains to be shown. The incorporation rate of 15N was found to be over 60% as early as PND5, when divergent anxiety-related behavior is clearly detectable for the first time, and significantly higher than in free choice blue-green algae diet fed animals. Type 2 diabetes is a metabolic disease which primary cause is obesity-linked insulin resistance.

Leave a Reply

Your email address will not be published.