Although there might be some differences in affinity might present a significant

Cav-1 KO mice develop CNS pathology similar to AD, such as altered NMDA receptor signaling, motor and behavioral abnormalities, increased ischemic cerebral injury, impaired spatial memory, and cholinergic function. Whether MLR, Cav-1 expression, and the organization of pro-survival and pro-growth Cabozantinib signaling mechanisms are altered in neurodegenerative states has yet to be investigated. The present study tested whether 1) Cav-1 organizes synaptic signaling GW786034 components in neuronal MLR and synaptosomes, 2) the localization of synaptic signaling components to neuronal MLR and synaptosomes is reduced in brains from aged wild-type and young Cav-1 KO mice, and 3) brains from Cav-1 KO mice develop a neuropathological phenotype similar to Alzheimer��s disease. The present study is the first to demonstrate that the cholesterol binding and MLR resident protein, Cav-1, complexes with synaptic proteins in the CNS, and that this organization is disrupted with age. Furthermore, this study is the first to demonstrate that loss of Cav-1 in a transgenic mouse model produces neuropathology similar to that exhibited with AD, i.e., Ab production, elevated astrogliosis, reduced cerebrovasculature and neuronal loss in the hippocampus. Our data suggest that not only are MLR and Cav-1 essential for maintaining and stabilizing proper synaptic signaling and neuroprotection against cerebral ischemia, but they also may serve to slow the amyloidogenic process of APP seen in AD brains. Lastly, Cav-1 KO mice may serve as the first non-mutational model of AD. It is essential to understand the basic neural mechanisms of synapse formation and stabilization in order to identify potential therapeutic targets for facilitating neuronal regeneration and recovery of neuronal networks in the aged and injured brain. Traditionally synapses and MLR are considered separate subcellular structures, yet they both contain identical physical characteristics that are essential such as cholesterol, glycosphingolipids, sphingomyelin, and other saturated fatty acid containing lipids as well as signaling components. Growing evidence supports the role for free cholesterol and MLR in neuronal synaptic formation, signaling and protection. Because free cholesterol directly affects Cav-1 expression, factors that alter intracellular cholesterol also change Cav-1 expression.

Leave a Reply

Your email address will not be published.