Also, larger magnetic forces would need to be applied to smaller particles. In addition it was generally observed that large magnetically linked antibodies require the binding of fewer cell surface MG132 Proteasome inhibitor epitopes to facilitate cell movements to the side of the tube. Using this large bead size for the paramagnetic system, we built a robotic workbench configured as a platform to integrate hardware and software for automating lymphocyte isolations from fresh blood specimens. Combining paramagnetic bead technology combined with the design of external magnets, we tested and built the platform for its ability to separate whole cell lymphocytes, typically CD8 lymphocytes. The purpose and goal of the robotic system was to build a platform that did not require centrifugation steps that are difficult to automate and also to avoid any whole blood lysis steps requiring reagents that might facilitate removal of contaminating RBCs, but would also decreased the viability and yields of the lymphocytes. The workbench liquid handling and robot motions were controlled using custom software to specify position, movement, and mixing of blood samples held by lab ware built to function within the designated TH-302 purchase instrument deck area. We worked within the robotic platform constraints to engineer, build and test different magnet geometries, magnet holders, and mounting plate assemblies made to support sample plates typically holding 2.0 ml sterile cryo vials also known commonly as Nunc vials. We then took the best working magnet configurations , sample tube plate designs and liquid processing requirements to seamlessly integrate each hardware piece with the automation movements. Figure 2 shows the two most promising of several designs for the platform sample holders. Depicted on the left side is an automated robotic platform based on cylindrical magnets, whereas the right side of the figure shows a design based on ring shaped external magnets that apply forces to the antibody linked cells with magnetic bead particles. FSC/SSC flow cytometry showed that the ring magnet design produced the purest cells of interest, in this case a subpopulation of white blood cells lymphocytes, called CD8 T cells. Impurities in the yielded cells with post-shaped magnets presumably were due to interference among the magnetic fields of adjacent cylindrical magnets. This was avoided by using ring magnets embedded in a flat plate where interfering fields between magnets were not an issue and overall capacity increase was possible by placing the magnets and Nunc tubes closer together.